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AbstrlIc:t-Upper bounds on the deformation rates of structures subjected to cyclic thermal
loading in the creep range are presented for low levels of thermal loading for a simple creep
constitutive equation which includes the effect of thermal recovery. It is llJ'IUed that the com
bination of material assumptions are conservative. The deformation rate is related to the strain
rate in a reference material test at constant stress and cyclic temperature history. The level of
stress is determined from the perfectly plastic shakedown solution and the reference temperature
at a given instant is the same as that for the structure subjected to a constant load and the
instantaneous temperature distribution.

I. INTRODUCTION

Methods of predicting the deformation of structures subjected to constant or steadily
increasing load at both high and low temperatures are reasonably well understood. For
cyclic loading, particularly thermal cycling, the problem becomes considerably more
complex, At the present time there are particular solutions [I), but no general technique
exists which is capable of giving an indication of the performance of a structure without
recourse to a complete computer solution. As a result design codes tend to be rather
conservative and the rules used do not reflect a deep understanding of structural per
formance under such loading conditions.

This paper attempts to provide such insight by the derivation ofdisplacement bounds
using a set of material and structural assumptions which attempt to be conservative
for the range of materials and loading sequences which occur in practice.

. In analysing the low temperature plastic behaviour of structures subjected to cyclic
thermal loading Ponter [2) found that the most conservative estimate of the ratchet
boundary was that given by the material model which allowed for hardening to a purely
elastic state in regions of the structure where complete reversed plasticity occurred.
We show in Section 3, through a simple example, that a similar conclusion operates
within the creep regime and that the assumption of perfect plasticity may be noncon
servative.

A further aspect of the material behaviour concerns the effects of material recovery
during parts of the cycle when the stress is a minimum and the temperature is in the
creep range. This circumstance frequently occurs in structures subject to temperature
cycling within the creep range. Megahed, Ponter and Morrison [3, 4) have calculated
the deformation rate of a simple two bar structure under these circumstances using
two material models both of which gave correct steady state creep and rapid plastic
loading properties, and one ofwhich includes recovery effects. Of these material models
the recovery model [5) gave the more conservative results. When compared with the
results of experiments on both copper [3) and 316 SS [4) the recovery model, in fact,
gave the best prediction, while a nonlinear viscous/strain-hardening model underesti
mated the deformation rate by about a factor of two, for the particular circumstance
of the tests. For both sets of tests the stresses always remained positive and the effects
of reverse cycling were not investigated.

O'Donnell and Porowski [1) have used an elastic/perfectly plastic/nonlinear viscous
model to analyse the behaviour of a plate subjected to a constant axial load and a
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temperature distribution that oscillates between the values shown in Fig. 3, where the
lower temperature was outside the creep range. Although this circumstance differs
from the one discussed here it does appear that their material model does not properly
take into account the cyclic hardening behaviour of the material nor the possibility of
recovery of the flow stress during the high temperature part of the cycle. The results
of Ponter [2] and Megahed, Ponter and Morrison [3, 4] show that the inclusion of both
these effects can lead to more severe results.

In this paper we use a result due to Ponter [6] to calculate upper bounds on the
deformation rate for the recovery model for a number of thermal loading problems in
terms of the shakedown solution to the problem. We limit ourselves to analysing the
class of structures that are subjected to constant primary load and cyclic thermal loading
within the creep range. The thermal loading arises from a temperature distribution
cycled between two prescribed limits. This circumstance corresponds to the loading
experienced by components of the liquid sodium cooled fast nuclear reactor.

The bound can give reasonable values for the deformation rate provided the mech
anism of incremental collapse associated with the shakedown solution is such that all
the deformation occurs at one instant during the cycle at each point in the structure,
Le. no cyclic plastic deformation occurs. If it does, then the bound can severely over
estimate the rate of deformation of the structure and then cease to be of any practical
use in design. The reason for this severe overestimation is that the bound is expressed
in terms oftotal energy dissipation over a stress cycle and does not distinguish between
the part of the energy dissipation that results from the net increase in strain deformation
of an element during a cycle and that which results from the reverse cyclic deformation
of the element.

Using the bound, either the average or point deformation of the structure may
be bounded in terms of the results of a reference material test where the stress level
is given in terms of the perfectly plastic shakedown solution and where the reference
temperature history may be expressed in terms of a nondimensional group of material
properties, and the extremes of temperature during the cycle.

In the next section the shakedown properties of three simple structures are discussed
in terms of the upper bound shakedown theorem. This is followed by a description of
the recovery model and its associated bound. The bound is then applied to the three
structures using the results of the shakedown analysis.

In an accompanying paper [7] the result is extended to problems involving very large
temperature changes where, in the plasticity solution, regions of the structure suffer
reverse plasticity.

2. STRUCTURAL BEHAVIOUR iN THE ABSENCE OF CREEP

Consider, for simplicity, the two bar structure shown in Fig. (I), where two bars of
equal length and of cross-sectional area A and 4A are restrained to sutTer equal exten-

Bar 1 4A A Bar 2

Fig. I. Two bar structure subjected to a constant load P and cyclic variation of temperature.
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sion. The loading is provided by a constant load Panda variation-in temperature of
the thinner bar between tem)5eratures emin and 00 + a-a while the teritperature of the
thicker bar is varied between Omin and Ou. For an elastic perfectly plastic material with
constant yield stress CTy , elastic modulus E and linear coefficient of expansion a, the
shakedown boundary is given by

P
CTy = P

L
CTy + B CT"

CT,
CTy = -

2

I
B=

5
(I)

(2)

where PL = 5ACTy , the limit load for P acting alone and CT, = ! EaaO, the maximum
thermo-elastic stress, which occurs in Bar 2.

These boundaries are shown as AB and Be in the "Bree" diagram shown in Fig.
(2). Throughout this paper CT, will denote the maximum effective thermo-elastic stress
resu;ting from the temperature cycle and, from dimensional arguments, has the form
CT, = c Ea48 where c is a numerical value less than unity.

Along boundary AB, there exists a stress history of the form CTI = CTIP + u?(t)
where CTIP is a stress field in equilibrium with the primary load P and u?(t) is the thermo
elastic stress field (i = I and 2) so that crf :e: cry, equality occurs at some time to in the
cycle. The mechanism of failure beyond AB is incremental collapse. The form of eqn
(I) may be shown to occur in all structures provided the mechanism of plastic collapse
does not change for the section of the shakedown limit for 0 :e: cr, :e: 2CTy , i.e. AB in
Fig. (2). This conclusion is implied by the upper bound shakedown theorem [2] which
is discussed briefly in Appendix A. For most practical situations it appears that 0 :e: B
:e:l.

In Section 4 it is shown how the stress distributions found from shakedown analyses
can be used to help bound the deformation rate in the creep range. The results are
presented in terms of a reference test conducted at a reference stress CTR and a reference

c'
8

6

5

Shakedown
- boundaries_a·. 0 _5

~
Perfect
plasticity

A'

"5

Fig. 2. Shakedown boundaries for two bar structure of Fig. I. the thin lines represent contours

of~ = O.S for: (a) nonlinear viscous material model; (b) nonlinear viscous/perfectly plastic
CTy

material model; (c) recovery model; (d) recovery model with limiting yield stress.
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temperature history. In the region A' AOBB' of the Bree diagram the reference stress
is given by eqn (1) with 0'), replaced by O'R:

O'y
0'R = P PL + BO't (3)

when O't is reduced to zero the form of O'R, reduces to the result originally discussed by
Sim [8] and recently reviewed by Leckie [9] for constant load.

The calculation of a reference temperature is facilitated by constructing shakedown
solutions where the yield stress varies spacially. We find that for the examples of this
paper the form of the shakedown boundary, eqn (1), is retained because the mechanism
of plastic incremental collapse remains the same as in the case of constant yield stress.

3. MATERIAL AND STRUCTURAL BEHAVIOUR IN THE CREEP RANGE

In Appendix B the response of the two bar structure of Fig. 1 to cyclic thermal
loading is analysed for a material that creeps. Four different material models are con
sidered. They are:

(a) Nonlinear viscous material.
(b) Nonlinear viscous/perfectly plastic material.
(c) Isotropic hardening/recovery model.
(d) Isotropic hardening/recovery model with limiting yield stress.
For simplicity the following assumptions concerning the rate of cycling and material

properties are made:
(i) Rapid cycling. That is when the cycle time is small compared with characteristic

material times.
(ii) emin is outside of the creep range.

(iii) The creep properties over the temperature range eo to 60 + de are independent
of temperature and can be expressed in the form:

where Eo is the strain-rate at a constant stress, 0'0.

For this particular problem the reference test is defined such that the strain-rate in
the uniaxial specimen is the same as that experienced by the two bars. Contours of
constant reference stress predicted by the four material models are shown in Fig. 2.
Over all ranges of loading the recovery model gives the most conservative result. In
the region A' AOBB' of the Bree diagram the reference stress for the recovery model
is given by eqn' (3).

This simple example serves to illustrate the conclusions of Megahed, Ponter and
Morrison [3, 4] that the recovery model is the most appropriate one for thermal loading
problems. We can now proceed and examine this material model in more detail along
with its predictions of structural behaviour.

The response of an element of material to a given multiaxial stress state can be
expressed in terms of the state variable, s, that is a measure of the present size of the
yield surface in stress space:

s = h(s) f(JJ - s) - r(s)

(4)

(5)

where S(O'ij) is a homogeneous function of degree one in O'ij. In its simplest form f is
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given by the step function

f ta _ s) {>= 0
0

when g =s, B~ 0
\P when g < s, or g = sand B< o.
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The condition g > s cannot be achieved.
The quantities h(s) and res) are the rates of strain hardening and thermal softening

and depend upon the instantaneous value of the state variable s and the temperature
6.

For fast loading, r(s) in eqn (5) can be ignored, then substitution of eqn (5) into eqn
(4) gives

. s ag
£.,=--

IJ h(s) aUij
(6)

and h(s) can be determined from the shape of the monotonic stress-strain curve. During
steady state conditions s = 0, so

f(jf - s) = r(s) = rOO
h(s) hoo

and

. rOO ag
£,,=--

'J hoo 00;/
(7)

The steady state creep behaviour can usually be described by an equation of the form

(8)

where 1i.H is the activation energy for creep, R is the universal gas constant, and Eo
is the strain rate in a uniaxial test conducted at a constant stress Uo and constant
temperature 60 • The use of eqns (7) and (8) allow r(s) to be determined. If the tem
perature range of interest is short then it is helpful to write eqn (8) in the form

where

Eij = Eo gn ag exp [-y(6 - 60 )]
0"8 aUij

t:.H
..., = R6ij'

(9)

Using the above equations Ponter [6] has derived an upper bound on the displacement
rate of a structure subjected to cyclic loading. If we limit ourselves to the cyclic state,
assuming that one is reached [10, 11], then for the present problem the bound takes
the form

where T = .!.., Ie being the cycle time,
Ie

* *P *T -8 ( )Uij = U;j + Uij + U;j I (11)
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O'~/ is a stress distribution that is in equilibrium with the applied primary load Pi;
0'] is a stress distribution in equilibrium with a dummy load Ti applied in the direction
of the required displacement rate; <1~(t) is the elastic stress distribution resulting from
the variation of temperature through the structure at time t; to is that time during the
cycle when ,6[0'~ (t)] is a maximum; Ui is the mean displacement rate in the direction
of Ti and ST is the surface over which Ti is applied.

An optimum bound can be found by making appropriate choices of the magnitude
of the load Ti and the stress distributions O'~P and O'~T. The optimum bound found in
this way corresponds to the rapid cycle solution [12]. Rapid cycling is when the cycle
time is such that the change in s due to recovery at,6 = ,6min (the minimum value of
,6 during the cycle) is small compared to s. Then the rate of accumulation of strain in
an element of material is determined by the maximum stress it experiences during the
cycle.

Here we do not concern ourselves with finding the optimum bound. For O'~P +
<1~ (to) we simply use that equilibrium stress field that arises from the analysis of the
shakedown boundary for an elastic perfectly plastic material. The stress field in equi
librium with Ti is taken from limit load calculations. Having used these stress distri
butions we then optimise the bound to find the best magnitude for Ti • A general result
is obtained in the next section for the class of problems where the shakedown boundary
is given by eqn (1). The bound is used to obtain solutions for a number of representative
problems in Section 5.

4. GENERAL BOUND FOR THERMAL LOAlliNG PROBLEMS

Ponter [2] has shown that for an elastic perfectly plastic material the ratchet mech
anism in a wide range of thermal loading problems is the same as the collapse mechanism
at constant temperature. Also, in the limited number of situations examined [2, 13],
the ratchet mechanism is the same if the yield stress is a function of position in the
structure. When these structures are subjected to cyclic thermal loading in the creep
range a particularly useful form of the reference stress and reference temperature his
tory results.

In this section structural behaviour when the creep properties are insensitive to
temperature is analysed first and a reference stress is obtained. Temperature effects
are then included and a reference temperature history is defined.

When a structure composed of an elastic/perfectly plastic material is subjected to
mechanical and thermal loads corresponding to a point on the shakedown boundary,

(12)

at each material point of the structure. Then for arbitrary values of P and 0', an equi
librium stress field can be chosen such that

where O'R = P (;:) + B 0',.

(13)

(14)

In the bound the magnitude of the dummy load T is unspecified. If we choose it such
that

(15)

where TL is the limit load for the structure, then an equilibrium stress field exists where

(16)



Low levels of thermal loading

Substituting eqns (13)-(16) in eqn (10) and notiilgthat

193

we find, for a material whose creep properties are not a function of temperature, that

Uo = Uj(tJ.r) - Uj(O) ~ ~ [_n_ (1 + TJ)CTR]" V (CT
TL
"), (17)

I tJ.t nTlCTo n + 1

The optimum bound is when Tl = .!., then
n

. . V CTy
Uo ~ ER -

I T
L

(18)

where ER is the strain rate at a stress CTR given by eqn (14).
When calculating a reference temperature history we will consider the temperatur~

cycle where

8 = 80 + wtJ.8 (19)

for a fraction Aof the cycle and 8 = 8min throughout the structure during the rest of
the cycle. The quantity w is a function of position in the structure. Use of the stress
fields (13)-(16) in the bound now leads to the result

• CTy Eo J{Uj ~ -TO ~ CT~ Aexp ('YwM) + (1 - A) exp ['Y (8min - 80 )]} dV.
L CTo V

(20)

In a reference test conducted at constant stress CTR whilst the temperature is cycled
between 8R (the reference temperature for the first part of the cycle) and 8m in, where

(21)

the mean strain rate is

ER = E~ CTJi {exp ('Y xtJ.8) + (1 - A) exp b (8min - 80)]). (22)
CTo

If the reference temperature for the first part of the cycle is defined as

Vexp ('Y xtJ.8) = Iv exp ('Y wtJ.8) dV (23)

then eqn (20) reduces to eqn (18) with ER given by eqn (22). It is sometimes possible
to find a better reference temperature if the shakedown analysis is performed for a
material whose yield stress is a function of position in the structure. For example if

I

cr;u = CTy {A exp ('Y wtJ.8) + (1 - A) exp b (8min - 8o)]} 11+ I (24)

=~~~ ~

then, provided the mechanism of failure is the same as in the constant yield stress
situation, it can be shown using the upper bound shakedown theorem that the position
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of the shakedown boundary is given by

(26)

The quantity G is defined in Appendix A:

Ir {A exp (-y w~8) + (1 - A) exp [-y (8 min - 80)]}-;;7j dV
_ Jv (dEPy,+1 (dEP )" + I

G = (27)
Iv dE

P
dV

where dEP is the effective strain increment at a material point that is compatible with
the ratchet mechanism.

For the same material, under a constant load T, plastic collapse occurs when

T=Gh (28)

(this equation is only valid if the mechanism of collapse under the load T is the same
as the mechanism of failure at the shakedown boundary. This is true for the situations
examined in this paper).

An equilibrium stress field can then be chosen where

(29)

and

(30)

Substitution of these two equations into the bound, eqn (10), and optimising w.r.t. TJ
gives

'. :<:: Eo n (cry) V/-Gn+ Iu, ~ cr8 crR T
L

• (31 )

This reduces to eqn (18) with ER given by eqn (22) if the reference temperature for the
first half of the cycle is defined using

A exp (-y x~8) + (1 - A) exp [-y (8min - 80 )] = G-In + I). (32)

By making use of the Minkowski inequality [14]

{ I}-(n + I) [ I ]-(n + I) [I I ]-(n + I)I (f + g) -;;7j dq ;all I-f;;+i dq + -g;;+i dq

eqn (32) becomes

exp (-y x~e) ;all G-(n+ I)

where

G = Iv [exp - (: :~~) ] dE
P

dV / Iv dE
P

dV

(33)

(34)

(35)
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and is the ratio of limit loads when the yield stress is constant and when it varies with
position in the structure (see eqn (AS) of Appendix A). The inequality of eqn (34) is
in the wrong sense for the purposes of defining a bound, but it gives an indication of
the form of the result and an approximation to the reference temperature history. If
the deformation rate is given by eqn (18) then the reference temperature is strictly given
by

(
'Y XA6)exp - ---- ~ G.
n + 1

(36)

The best choice of reference temperature for the first part of the cycle is related
through eqn (21) to the minimum value of x that results from the solution of eqns (23)
and (36). These two equations for the reference temperature are exactly the same as
those derived by Cocks and Ponter [15] for a structure subjected to constant load and
the constant nonuniform temperature distribution of eqn (19). As pointed out in [15]
the equation that gives the lowest value of x is the one that is derived from the stress
distribution [either eqn (13) or eqn (29)] that most resembles that which occurs in
practice.

The results of this section have a particularly simple interpretation: the net defor
mation rate of a structure subjected to a constant primary mechanical load and a cyclic
history of temperature, can be found by utilising the results of a reference uniaxial
creep test conducted at a constant stress rrR and a cyclic temperature history. The
definition of reference stress parallels that used for constant load and temperature [8,
9] and is related to the shakedown boundary through eqn (14). In the reference test
the temperature at a given instant in the cycle is equal to the reference temperature
when the structure experiences a constant temperature distribution identical to that
which occurs instantaneously in the structure [15].

5. APPLICATION OF THE BOUND TO THERMAL LOADING PROBLEMS

In this section we concern ourselves with examining four particular thermal loading
problems that have been shown by Ponter [2] to be representative of the types of
problem encountered in high temperature design. These situations are shown diagram
matically in Figures 3, 6 and 9. The first problem is the classical Bree [16] situation,
which is analysed in section 5.2, where a plate is subjected to a constant axial load
and alternate cycles of uniform temperature and linear variation of temperature across
the plate. In Section 5.2 we examine the problem of a simply supported plate carrying
a uniform load subjected to the cycles of temperature shown in Fig. (6). Figure (9)
shows a thin walled tube under a constant uniaxial load with a temperature front that
oscillates over a portion of the tube. This problem is analysed in Section 5.3 for both
short and long extents of travel.

The shakedown boundaries for each situation are shown in Figs. 4, 7, 10 and 11 for
a material whose yield stress does not vary with temperature. For each situation the
high primary load boundary can be represented by an equation of the form of eqn (1).

5.1. The Bree plate
The thermo-elastic stress distribution resulting from the nonuniform temperature

distribution is shown in Fig. (3). The stress varies linearly across the plate between rr,
at z == - d/2 and - rr, at z == d/2, where

EaA6
rr, == -2-'

The position of the shakedown boundary is given by [2, 16]

rr,
rry == rrp + '4 (37)
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t t t t t

I.
tz
d.

Fig. 3. Temperature and thermo-elastic stress distributions for the Bree plate.

when the yield stress is constant, and from eqn (14), the reference stress is

at
CTR = ap + 4' (38)

Contours of constant reference stress are plotted in Fig. (4).
Using eqn (23), the reference temperature for the nonuniform temperature distri.

butionis

exp ~ xA6 = J~~2 exp (~A6~) . d (~).

Integration of eqn (39) gives

1 [2, ~ A6]x=--In -smh--.
~ AO ~ A6 2

For small values of ~ AO this reduces to

~ A6 n ~ AO
x=-=-'--

2424 n'

(39)

(40)

(41)

Both these equations are plotted in Fig, (5).
For this particular problem a reference temperature history is best found using the

shakedown solution when the yield stress is given by

CT;U = ay {A. exp (~ AO~) + (1 - A.) exp h (Omin - Oo)]} -lIn (42)
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Fig. 4. Bree diagram showing contours of constant reference stress.

the result is given by eqn (32) with (n + 1) replaced by n. G can be found using the
upper bound shakedown boundary theorem and is given by eqn (27) with deP set equal
to unity and (n + 1) replaced by n. The quantity G is given by eqn (35) with deP again
set equal to unity and (n + 1) set equal to n. The reference temperature given by eqn
(36) is then

'Yaa fll2
exp - -- x = exp -

n -1/2

Integration of eqn (43) gives

(43)

n [2n. 'YaaJx = ---In --smh--'Yaa 'Yaa 2n

which for small values of 'Y aa becomes
n

1 'Yaa
x = - 2'4-n-'

0·4...----------,....,
0'3

Fig. S. Reference temperature. DR .. 60 + xAD. for Bree plate predicted by (i) eqn (40) and (ii)
eqn (44). The dashed lines represent a linearisation of the results.

(44)

(45)
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llS{

Sminl-------ir-----

Fig. 6. Thermo-elastic stress distribution in simply supported plate for temperature distribution
shown.

These two equations are also plotted in Fig. (5) where they can be compared with eqns
(40) and (41). They give the better definition of reference temperature.

5.2. Plate supporting a normal pressure
Shakedown occurs in the plate of Fig. (6) when

(46)

where

and the maximum thermo-elastic stress in the structure is

Eaaa
CJ"=-3-;

Equation (46) is for a material that yields according to the Tresca criterion, and the
results of the bound are strictly for a material whose creep rate is given by the associated
Tresca flow rule. But provided the size of the surface of constant energy dissipation
for a von Mises material is chosen such that Tresca and von Mises flow rules give
the same creep rate in uniaxial tension the result presented below is also a bound for
a von Mises material.

The mechanism of deformation associated with eqn (46) is a conical mode. Cocks
[13] has shown that this is the correct mechanism provided

12
CJ'/:Ei:7'CJ'y (47)

when the yield stress is uniform throughout the structure. When the yield stress is a
function of position in the structure the failure mechanism is the same, but the limiting
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Hi

Fig. 7. Bree diagram for simply supported plate showing contours of constant reference stress.

value of a, is less than that given by eqn (47). Details of this limit are given by Cocks
[13].

From eqn (14) the reference stress is given by

(
ay) a,

CTR = P P
L

+ 4' (48)

Contours of constant reference stress are plotted in Fig. (7).
The reference temperature for the part of the cycle where the temperature distri

bution is nonuniform, [eqn (23)], is

Integration of eqn (49) gives

x= 1 1 [ 0.5 ]l---xa n 1 2 2

'Y (_) _ [exp _ 'Y aa] [(_1) + _1]
'Y a9 'Y aa 'Y aa

(50)

which for small values for 'Y aa reduces to

1 n + 1 'Y 46x=-+-_·-
3 36 n+1'

(51)

These two equations are plotted in Fig. (8).
Using the conical mode of failure G can be calculated using eqn (35) when the yield

stress varies with position according to eqn (24):

G= L1

exp - [n'Y :a1 (1 - i)].d (i)· (52)

Using eqn (36) the reference temperature for the first part of the cycle can be found:
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'Y A6 IIexp - x -- = exp -
n + I 0

(53)

which upon integration gives

x =~ In [~ / (1 - exp - 'Y A6 ) ] .
'Y A6 'Y A6 n + 1

'Y A6
For small values of --I cqn (54) reduces to

n +

1 1 'Y A6x=-----
2 24n + r

(54)

(55)

Both of these equations are plotted in Fig. (8) where they can be compared with eqns

(50) and (51). For low values of the quantity 'Y A6} eqns (50) and (51) give the better
n +

reference temperature. While for

_'Y_A_6 > _1_2_
n+12n-

eqns (54) and (55) represent the better choice. The reason for this can be found by
examining the two moment distributions used in the definition of reference temperature,
and comparing them with the distribution obtained from an exact analysis. Venkatraman
and Hodge [17] give the bending moment distribution for A8 = O. The moments are
greater near the centre of the plate, and less near the outer edge, than they are for a
perfectly plastic material. As ae is increased the bending moments supported by the
centre of the plate decreases, while their magnitude increases in the outer regions. The
bending moment distribution is then similar to that for a perfectly plastic material whose
yield stress is not a function of temperature. Use of this moment distribution in the
bound leads to the better reference temperature. If A6 is increased still further then
the hoop bending moment at the centre of the plate drops below that at the outer edge,
the bending moment distribution is more like that for a material with a yield stress that
is a function of position, and use of this moment distribution in the bound leads to the
better reference temperature.

0·7 ,..---------------,

0·6

x

0·3oL----I.o-S~--:-1.'-:-O---:-L1.S:----::J2.0

ytJ.e
n;r

Fig. 8. Reference temperature. eR = eo + x.1e. for simply supported plate predicted by (i) eqn
(SO) and (ii) eqn (54). The dashed line is a linearisation of the result.
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FiB. 9. Thermo-clastic stress distribution in the vicinity of a temperature front that moves along
the tube.

201

5.3 Temperature front moving along a tube
The stress distribution in the vicinity of the temperature front is shown in Fig. (9),

[18]. lfthe length of tube over which the temperature front moves is small compared
with the characteristic decay length of the hoop component of stress then the problem
is one of short travel. The element of material over which the front moves is subjected
to a cyclic hoop component of stress

where

EaA6
at =--

2

and the cyclic thermal stress in the remainder of the tube is practically zero. Provided

aper=s;;
t 2 (56)

where ap is the axial stress applied to the tube, it is easy to show that for both von
Mises and Tresca materials the shakedown boundary is given by

ay = erp •

So the reference stress is aR = erp and the reference temperature can be defined using
eqn (23). But if we just concentrate on that part of the tube that always experiences
the higher temperature 60 , then the deformation rate of this region is

(57)

and, for this particular problem, the temperature in the reference test should be main
tained at 6 = 60 throughout the duration of the test.
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Fig. 10. Bree diagram for short travel problem showing contours of constant reference stress.

Contours of constant reference stress are shown in Fig. (10) up to the limit of eqn
(56) which is represented by the line OBB'.

When the temperature front oscillates over a long length of tube each element of
material experiences a thermo-elastic hoop stress that alternates between ± Ut. Be
cause a significant portion of the tube experiences the same range of loading this hoop
stress is unable to redistribute. For a Tresca material shakedown occurs if

(58)

If the reference stress is given by

(59)

then, from eqn (20), the deformation rate is

(60)

where / is the length of travel of the front, if the reference temperature history is chosen
such that 60 is maintained for a fraction Aof the test and 6 :::; a,. for the remainder. For

8'

1·5

E.t.
Oy

_ Shakedown boundary
_ Contours of

constant OR lOy

Fig. II. Bree diagram for long travel problem showing contours of constant reference stress.
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simplicity it has been assumed in this example that each element of material spends
the same amount of time at each temperature. Contours of constant reference stress
are plotted in Fig. (11). Unlike in the previous examples eqn (60) applies over the full
range of loading situations. A consequence of this result is that the tube can deform
axially under zero applied primary load.

6. CONCLUSIONS

In this paper it has been shown how the results from shakedown analyses can be
used to bound the deformation rate of a structure in the creep range. The deformation
rate is related to the strain rate in an uniaxial specimen subjected to a constant reference
stress and cyclic temperature. The reference stress is given by

where PL is the limit load of the structure and B is the gradient of the shakedown
boundary on a plot of P/PL against a,!f~)'. The reference temperature at a given instant
is the same as that for the structure subjected to a constant load and the instantaneous
temperature distribution. For the situations examined here it is found that a conser
vative result is obtained if the temperature is cycled between 8mesn , the mean tem
perature when there is a temperature gradient through the structure, and 8min , the
uniform temperature in the structure.

A detailed comparison of the results given here with those given by O'Donnell an~
Porowski [1] for a viscous/perfectly plastic material is given in an accompanying paper
[7]. In [7] the results developed here are extended to the region CC'BB' of the Bree
diagram.
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APPENDIX A
Shakedown boundaries for cyclic thermal loading

Consider a body subjected to a constant load P. If dE~ is the strain field compatible with unit displacement
in the direction of P at collapse, then from the principle of virtual work we find

(AI)

where I1li is the stress on the yield surface associated with the plastic strain increment dE~. If dEP is the
effective strain component at a point then

If the yield stress is now a function of position in the structure, for example if

(tv 'YA8)
l1~u = 11,. exp - --.. n + I

(A2)

(A3)

where w is defined in eqn (19), then, if the mechanism of collapse is the same, the limit load is given by

( (tv 'YA8)P'l" = (1), Jv exp - ;-+j' . dEP dV

or

where

G= Lexp - G' :A~) .dEP dV / LdEP dV.

Shakedown can be analysed in much the same way. The stress at a point in the body is given by

If at a time to the stress l1ij = I1U, then applying the principle of virtual work, we find

where 11, aij = Uij(to). This can be written in the form of eqn (I)

(
11)')11... = P P

L
+ B 11,

where PL is given by eqn (A2) and

If the mechanism changes for increasing A8 it may be shown (2) that

P
11,. ;;. - 11" + B 11,.. PL'

When the yield stress is a function of position in the structure, i.e. when

I

a;:u = l1y {A exp (oy wAS) + (I - A) exp !'Y (8mi" - 8o))} n+ I

(A4)

(AS)

(A6)

(A7)

(A8)

(A9)

(AlO)

(All)
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or

I

CTy Iv {Aexp('Y ",49) + (I - A)exp !'Y(9min - 9u)]}-;;+I dtPdV =P + {1, Iv lliJdttdV (AI2)

where

- (CT")G CT,\' = P p~ + B CT, (AJ3)

(AI4)

r [A exp (oy 1I'49) + (J - X) exp oy (8min - 90)] - II~ I dV
_ Jv (dtP)"+ I (dtP)II+ I

G= .
Iv dt

P
dV

In Section 4 it is shown that the choice of reference temperature in the creeping problem depends on G- (n + II,

see eqn (32).

APPENDIX B

Effect of the choice ofmaterial model on the behaviour ofa two bar structure
In this Appendix we analyse the response of the two bar structure of FiS. I to tbe loadins situation

indicated tbere for different assumptions of material behaviour. The material models considered are:
(a) Nonlinear viscous
(b) Nonlinear viscous/perfectly plastic
(c) Recovery
(d) Recovery model with limiting yield stress.

In each instance it is assumed that 9min is outside of the creep ranse and that over the temperature range 90
to 80 + 49 the creep properties of the material are independent of temperature. Rapid cycle loading conditions
are also assumed.

The results are presented in terms of a reference stress, CTR, which is defined as the constant stress that
results in tbe accumulation ofa strain tR after a time tR at a temperature 90. where tR is the strain accumulated
in one of the bars during a cycle and IR is the time spent in tbe creep range. Contours of constant reference
stress are plotted on Fig. 2 for each assumption of material behaviour.

(a) Nonlinear viscous malerial model. For a nonlinear viscous material there is no accumulation of
plastic strain at the low temperature. Strain only accumulates at the high temperature where, from com
patibility considerations, the stress in the two bars must be the same. It is easy to show that

(BI)

where PL = SA cry. in all instances.
(b) Nonlinear viscous/perfectly plastic material model. The result given by equation (AI) is valid for

this material model provided the stresses in the two bars does not exceed the yield stress, cr", during any
part of the cycle. Yield is violated first in bar 2 at 9 = 8m iR when:

where

For

4
CIt =5EaA9.

P CIt-+-=
PL Cly

(B2)

(B3)

the stress in bar 2 oscillates between Cly at 9 = 8min and cry - CI, at 9 = 90 + 49. From compatibility and
equilibrium considerations it follows that:

~ = ~.f. + 1(!!! - I).
Cly 4 PL 4 cr..

This result applies provided
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then reversed plastic strains occur in bar 2. Thermal strains resulting from any further increase in ~8 are
matched by plastic strains with no increase of stress in bar 3. so:

CTR 5 P I
- = -- +-.
CTy 4 PL 4

(B4)

(c) Recovery model. The recovery model is described in section 3. Structural behaviour under conditions
of rapid cycling is discussed in [6] and [7]. Under this loading condition the rate of accumulation of strain
is determined by the maximum effective stress experienced during the cycle. This strain is a combination of
creep and time independent plastic strain. For the present uniaxial situation if we let CTR be the maximum
stress in each bar during the cycle then,

I
CTR = CTp ' + :4 CT, = CTpl

where CTp ' and CTpl are the stresses in bars I and 2 respectively when 8
equilibrium

CTR P I CT,-=-+--.
CTy PL 5 CTy

This is valid up to CTpl = ~. Le. until:

(B5)

8min. Then in order to satisfy

(B6)

Then the effective stress in bar 2 is the same at both ends of the cycle. Bar 2 now suffers reversed plastic

strains (see eqn (3) or [7]) while the stress oscillates between :t ~. From equilibrium consideration we

calculate the reference stress to be:

CTR 5 P 1 CT,-=--+--.
CT.y 4 PL 8 CTy

(B7)

(d) Recovery model with limiting yield stress. For this material model the results given by eqns (A6)
and (A7) are valid until

CTpl = CTy

Le.

CT,'2 = CTy • (A8)

Then any increase in thermal strain in bar 2 is offset by an increase in plastic strain with no increase of
stress. The reference stress is then given by eqn (B4).


